Parallel and distributed neurocomputing with wireless sensor networks

نویسندگان

  • Gürsel Serpen
  • Linqian Liu
چکیده

This paper proposes a novel hardware computing platform for fully parallel and distributed computation of artificial neural network (ANN) algorithms. The proposed idea entails leveraging the existing wireless sensor networks (WSN) technology to serve as a parallel and distributed hardware platform to implement computations for artificial neural network algorithms. Feasibility of the proposed neurocomputing architecture is demonstrated through a simulation-based case study, which uses Kohonen's selforganizing map as the neural network algorithm. MATLAB-based PROWLER, which is a protocol and application level simulator for wireless sensor networks, is employed for the simulation study. Findings demonstrated that the proposed neurocomputing architecture was able to train the SOM neural network with competitive accuracy values for the unsupervised clustering task. Conclusions of the simulation study suggest that the WSN-based neurocomputing architecture is a feasible alternative for realizing parallel and distributed computation of artificial neural network algorithms. & 2015 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and evaluation of two distributed methods for sensors placement in Wireless Sensor Networks

Adequate coverage is one of the main problems for distributed wireless sensor networks and The effectiveness of that highly depends on the sensor deployment scheme. Given a finite number of sensors, optimizing the sensor deployment will provide sufficient sensor coverage and save power of sensors for movement to target location to adequate coverage. In this paper, we apply fuzzy logic system to...

متن کامل

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

ENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS

 Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...

متن کامل

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

Design and evaluation of two distributed methods for sensors placement in Wireless Sensor Networks

Adequate coverage is one of the main problems for distributed wireless sensor networks and The effectiveness of that highly depends on the sensor deployment scheme. Given a finite number of sensors, optimizing the sensor deployment will provide sufficient sensor coverage and save power of sensors for movement to target location to adequate coverage. In this paper, we apply fuzzy logic system to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 173  شماره 

صفحات  -

تاریخ انتشار 2016